next up previous
Next: About this document Up: A Selected Survey of Previous: Further information

References

1
G.E. Andrews. On the foundations of combinatorial theory V, Eulerian differential operators. Stud. App. Math., 50:345--375, 1971. (MR 46#8845).

2
P. Appell. Sur une classe de polynômes (French, On a class of polynomials). Ann. Sci. Ecole Norm. Sup, (2) 9:119--144, 1880.

3
A.K. Avramjonok. The theory of operators (n-dimensional case) in combinatorial analysis (Russian). In Combinatorial analysis and asymptotic analysis no. 2, pages 103--113. Krasnojarsk Gos. Univ., Krasnojarsk, 1977. (MR 80c:05017).

4
M. Barnabei. Lagrange inversion in infinitely many variables. J. Math. Anal. Appl., 108:198--210, 1985. (MR 86j:05023).

5
G. Baron and P. Kirschenhofer. Operatorenkalkül über freien Monoiden. III. Lagrangeinversion und Sheffersysteme (German, Operator calculus on free monoids III. Lagrange inversion and Sheffer systems). Monatsh. Math., 92:83--103, 1981. (MR 83d:05006b).

6
E.T. Bell. The history of Blissard's symbolic calculus, with a sketch of the inventor's life. Amer. Math. Monthly, 45:414--421, 1938. (Zbl. 19, 389).

7
E.T. Bell. Postulational bases for the umbral calculus. Amer. J. Math., 62:717--724, 1940. (MR 2, 99).

8
L.C. Biedenharn, R.A. Gustafson, M.A. Lohe, J.D. Louck, and S.C. Milne. Special functions and group theory in theoretical physics. In Special functions: group theoretical aspects and applications, Math. Appl., pages 129--162. Reidel, Dordrecht, 1984. (MR 86h:22034).

9
L.C. Biedenharn, R.A. Gustafson, and S.C. Milne. An umbral calculus for polynomials characterizing tensor products. Adv. Math., 51:36--90, 1984. (MR 86m:05016).

10
J.W. Brown. On multivariable Sheffer sequences. J. Math. Anal. Appl., 69:398--410, 1979. (MR 80j:05007).

11
V.M. Bukhshtaber and A.N. Kholodov. Boas-Buck structures on sequences of polyomials. Funct. Anal. Appl., 23((4)):266--276, 1990. (MR 91d:26017).

12
M. Cerasoli. Enumerazione binomiale e processi stocastici di Poisson composti. Bollettino U.M.I., (5) 16-A:310--315, 1979. (MR 80k:05008).

13
L. Cerlienco, G. Nicoletti, and F. Piras. Polynomial sequences associated with a class of incidence coalgebras. Ann. Discr. Math., 30:159--169, 1986. (MR 88b:05018).

14
L. Cerlienco and F. Piras. G-R-sequences and incidence coalgebras of posets of full binomial type. J. Math. Anal. Appl., 115:46--56, 1986. (MR 87k:05018).

15
Ch. Charalambides and J. Singh. A review of the Stirling numbers, their generalizations and statistical applications. Comm. Stat. Th. Methods, (8) 17:2533--2595, 1988. (MR 89d:62017).

16
F.M. Cholewinski. The finite calculus associated with Bessel functions, volume 75 of Contemporary Mathematics. Amer. Math. Soc., 1988. (MR 89m:05013).

17
J. Cigler. Operatormethoden für q-Identitäten III: Umbrale inversion und die Lagrangesche formel. Arch. Math., 35:533--543, 1980. (MR 83g:05008).

18
J. Cigler. Operatormethoden für q-Identitäten II: q-Laguerre polynome. Monatsh. Math., 91:105--117, 1981. (MR 83g:05007).

19
H.B. Curry. Abstract differential operators and interpolation formulas. Portugal. Math., 10:135--162, 1951. (MR 13, 632).

20
H.T. Davis. The theory of linear operators. Principia Press, Bloomington, Indiana, 1936. (bibliography on Appell polynomials on p. 25 etc.).

21
A. Di Bucchianico. Banach algebras, logarithms, and polynomials of convolution type. J. Math. Anal. Appl., 156:253--273, 1991. (MR 92d:46123).

22
A. Di Bucchianico. Representations of Sheffer polynomials. Stud. Appl. Math., 93:1--14, 1994.

23
A. Di Bucchianico and D.E. Loeb. A simpler characterization of Sheffer polynomials. Stud. Appl. Math., 92:1--15, 1994.

24
H. Domingues. The dual algebra of the Dirichlet coalgebra. Rev. Mat. Estatist., 1:7--13, 1983. (MR 86i:05022).

25
J.P. Fillmore and S.G. Williamson. A linear algebra setting for the Rota-Mullin theory of polynomials of binomial type. Lin. and Multilin. Alg., 1:67--80, 1973. (MR 47#9321b).

26
J.M. Freeman. Orthogonality via transforms. Stud. Appl. Math., 77:119--127, 1987. (MR 90g:42046).

27
A.M. Garsia. An exposé of the Mullin-Rota theory of polynomials of binomial type. Lin. and Multilin. Alg., 1:47--65, 1973. (MR47#9321a).

28
A.M. Garsia and S. Joni. Higher dimensional polynomials of binomial type and formal power series inversion. Comm. Algebra, 6:1187--1211, 1978. (MR 58#10484).

29
B. Germano and P.E. Ricci. Umbral calculus and orthogonal systems. Rend. Mat. Appl., 12(1):217--233, 1992. (Zbl. 754, 20).

30
L. Giraitis. A central limit theorem for polynomial forms I. Liet. matem. rink. (=Litov. mat. sbor.), 29(2):266--289, 1989. (MR 91c:60026).

31
L. Giraitis. A central limit theorem for polynomial forms II. Liet. matem. rink. (=Litov. mat. sbor.), 29(4):682--700, 1989. (MR 91m:60040).

32
L. Giraitis and D. Surgailis. Multivariate Appell polynomials and the central limit theorem. In Dependence in probability and statistics, volume 11 of Progress Prob. Stat., pages 21--71. Birkhäuser, 1986. (MR 89c:60024).

33
S. Grabiner. Convergent expansions and bounded operators in the umbral calculus. Adv. Math., 72:132--167, 1988. (MR 90c:05015).

34
S. Grabiner. Using Banach algebras to do analysis with the umbral calculus. In Conference on Automatic Continuity and Banach Algebras, volume 21, pages 170--185. Proc. Centre Math. Anal. Austral. Nat. Univ, 1989. (MR 91j:46097).

35
A. Guinand. The umbral method: A survey of elementary mnemonic and manipulative uses. Amer. Math. Monthly, 86:187--195, 1979. (MR 80e:05001).

36
H. Gzyl. Interpretacion combinatorica de polinomios de tipa binomial. Acta Cient. Venezolana, 27:244--246, 1976. (MR 55#118).

37
H. Gzyl. Canonical transformations, umbral calculus and orthogonal theory. J. Math. Anal. Appl., 111:547--558, 1985. (MR 87e:05019).

38
H. Gzyl. Umbral calculus via integral transforms. J. Math. Anal. Appl., 129:315--325, 1988. (MR 89a:05022).

39
H. Gzyl. Hamilton Flows and Evolution Semigroups, volume 239 of Research Notes in Mathematics. Pitman, 1990.

40
P.S. Hirschhorn and L.A. Raphael. Coalgebraic foundations of the method of divided differences. Adv. Math., 91:75--135, 1992. (MR 92m:05012).

41
J. Hofbauer. A short proof of the Lagrange-Good formula. Discr. Math., 25:135--139, 1979. (MR 81e:05019).

42
E.C. Ihrig and M.E.H. Ismail. On an umbral calculus. In 10th Proc. Southeastern Conf. Combinatorics, Graph Theory, Computing, Boca Raton, pages 523--528, 1979. (MR 82b:13010).

43
E.C. Ihrig and M.E.H. Ismail. A q-umbral calculus. J. Math. Anal. Appl., 84:178--207, 1981. (MR 83a:05011).

44
M.E.H. Ismail. Polynomials of binomial type and approximation theory. J. Approx. Th., 23:177--186, 1978. (MR 81a:41033).

45
S.A. Joni. Polynomials of binomial type and the Lagrange inversion formula. PhD thesis, University of California, La Jolla, 1977.

46
S.A. Joni. Lagrange inversion in higher dimension and umbral operators. J. Linear and Multilinear Algebra, 6:111--121, 1978. (MR 58#10485).

47
S.A. Joni. Multivariate exponential operators. Stud. Appl. Math., 62:175--182, 1980. (MR 81c:41050).

48
A.N. Kholodov. The umbral calculus and orthogonal polynomials. Acta Appl. Math., 19:1--54, 1990. (MR 92b:33022).

49
A.N. Kholodov. The umbral calculus on logarithmic algebras. Acta Appl. Math., 19:55--76, 1990. (MR 91k:05014).

50
A.N. Kholodov. Formal coalgebras and applications. J. Pure Appl. Algebra, 85:271--310, 1993.

51
P. Kirschenhofer. Binomialfolgen, Shefferfolgen und Faktorfolgen in den q-Analysis. Sitzungber. Abt. II Österr. Akad. Wiss. Math. Naturw. Kl., 188:263--315, 1979. (MR 82d:05013).

52
Ch. Krattenthaler. Operator methods and Lagrange inversion. Trans. Amer. Math. Soc, 305:431--465, 1988. (MR 89d:05017).

53
T. Kreid. Combinatorial operators. Comment. Math. Prace Math., 29:243--249, 1990. (MR 92d:05014).

54
T. Kreid. Combinatorial sequences of polynomials. Comment. Math. Prace Math., 29:233--242, 1990. (MR 92h:05012).

55
S.G. Kurbanov and V.M. Maksimov. Mutual expansions of differential operators and divided difference operators. Dokl. Akad. Nauk UzSSR, 4:8--9, 1986. (MR 87k:05021).

56
A. Kyriakoussis. Asymptotically minimum variance unbiased estimation for a class of power series distributions. Ann. Inst. Statist. Math., 37:241--250, 1985. (MR 86j:62064).

57
D.E. Loeb. The iterated logarithmic algebra. PhD thesis, MIT, 1989.

58
D.E. Loeb. Sequences of symmetric functions of binomial type. Stud. Appl. Math., 83:1--30, 1990. (MR 92e:05012).

59
D.E. Loeb. The iterated logarithmic algebra. Adv. Math., 86:155--234, 1991. (MR 92g:05022).

60
D.E. Loeb and G.-C. Rota. Formal power series of logarithmic type. Adv. Math., 75:1--118, 1988. (MR 90f:05014).

61
Ya. M. Lvovskii and E.G. Tsylova. Proof of limit theorems for Pólya distributions using the generalized Appell polynomials. J. Soviet Math., 41:877--881, 1988. (MR 89k:62024).

62
G Markowsky. Differential operators and the theory of binomial enumeration. J. Math. Anal. Appl., 63:145--155, 1978. (MR 58#21666).

63
J. Meixner. Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion ,(German) Orthogonal polynomial systems with a a generating function of a special form. J. London Math. Soc., 9:6--13, 1934. (Zbl. 7, 307).

64
P. Michor. Contributions to finite operator calculus in several variables. J. Combin. Inform. System Sci., 4:39--65, 1979. (MR 81b:05013).

65
G. Moldovan. Algebraic properties of a class of positive convolution operators. Studia Univ. Babes-Bolyai Math., 26:9--14, 1981. (MR 83i:41029).

66
R.A. Morris, editor. Umbral calculus and Hopf algebras, volume 6 of Contemporary Mathematics. Amer. Math. Soc., 1982. (MR 83a:05001).

67
R. Mullin and G.-C. Rota. On the foundations of combinatorial theory III. Theory of binomial enumeration. In Harris, editor, Graph theory and its applications, pages 167--213. Academic Press, 1970. (MR 43#65).

68
W. Nichols and M.E. Sweedler. Hopf algebras and combinatorics. In Umbral calculus and Hopf algebras, volume 6 of Contemporary Mathematics, pages 49--84. Amer. Math. Soc., Providence, 1982. (MR 83g:16019).

69
H. Niederhausen. Methoden zur Berechnung exakter Verteilungen vom Kolmogorov-Smirnov Typ. Technical Report 99, Technical Univ. Graz, Austria, 1978.

70
H. Niederhausen. Linear recurrences under side conditions. Eur. J. Combin., 1:353--368, 1980. (MR 83c:05009).

71
H. Niederhausen. Sheffer polynomials and linear recurrences. Congr. Num., 29:689--698, 1980. (MR 82m:05012).

72
H. Niederhausen. Sheffer polynomials in path enumeration. Congr. Num., 26:281--294, 1980. (MR 82d:05015).

73
H. Niederhausen. Sheffer polynomials for computing exact Kolmogorov-Smirnov and Rényi type distributions. Ann. Statist., 9:923--944, 1981. (MR 84b:62067).

74
H. Niederhausen. How many paths cross at least l given lattice points. Congr. Num., 36:161--173, 1982. (MR 85b:05014).

75
H. Niederhausen. Sheffer polynomials for computing Takács's goodness-of-fit distributions. Ann. Statist., 11:600--606, 1983. (MR 84h:62077).

76
H. Niederhausen. A formula for explicit solutions of certain linear recursions on polynomial sequences. Congr. Num., 49:87--98, 1985. (MR 87j:11018).

77
H. Niederhausen. The enumeration of restricted random walks by Sheffer polynomials with applications to statistics. J. Statist. Planning & Inference, 14:95--114, 1986. (MR 87j:05015).

78
H. Niederhausen. Lagrange inversion via transforms. Congr. Num., 54:55--62, 1986. (MR 88e:05012).

79
H. Niederhausen. Initial value problems in the logarithmic algebra. Discr. Math., 94:23--37, 1991. (MR 92m:05013).

80
C. Parrish. Multivariate umbral calculus. J. Linear and Multilinear Algebra, 6:93--109, 1978. (MR 58#10487).

81
S. Pincherle and U. Amaldi. Le operazioni distributive e le loro applicazioni all'analisi. N. Zanichelli, Bologna, 1901. (esp. pp. 130-139).

82
R. Rasala. The Rodrigues formula and polynomial differential operators. J. Math. Anal. Appl., 84:443--482, 1981. (MR 83g:33009).

83
N. Ray. Extensions of umbral calculus, penumbral coalgebras and generalized Bernoulli numbers. Adv. Math., 61:49--100, 1986. (MR 88b:05019).

84
N. Ray. Symbolic calculus: a 19th century approach to MU and BP. In Homotopy theory (Durham 1985), volume 117 of London Math. Soc. Lect. Notes Series, pages 195--238. Cambridge University Press, 1987. (MR 89k:55007).

85
N. Ray. Umbral calculus, binomial enumeration and chromatic polynomials. Trans. Amer. Math. Soc., 309:191--213, 1988. (MR 89k:05014).

86
N. Ray. Loops on the 3-sphere and umbral calculus, volume 96 of Cont. Math., pages 297--302. Amer.Math. Soc., 1989. (MR 90i:55006).

87
N. Ray. Stirling and Bernoulli numbers for complex oriented homology theory, volume 1370 of Lect. Notes in Math., pages 362--373. Springer, Berlin, 1989. (MR 90f:55010).

88
N. Ray. Tutte algebras of graphs and formal group theory. Proc. London Math. Soc., 65:23--45, 1992. (Zbl. 773,05049).

89
N. Ray and C. Wright. Colourings and partition types: a generalised chromatic polynomial. Ars Combin., 25 B:277--286, 1988. (MR 89e:05092).

90
M. Razpet. An application of the umbral calculus. J. Math. Anal. Appl., 149:1--16, 1990. (MR 91i:05018).

91
M. Razpet. A new class of polynomials with applications. J. Math. Anal. Appl., 150:85--99, 1990. (MR 91i:05020).

92
D.L. Reiner. Multivariate sequences of binomial type. Stud. Appl. Math., 57 (2):119--133, 1977. (MR 58#21668).

93
D.L. Reiner. The combinatorics of polynomial sequences. Stud. Appl. Math., 58:95--117, 1978. (MR 58#260).

94
S.M. Roman. The algebra of formal series. Adv. Math., 31:309--329, 1979. (MR 81b:05016 a/b); erratum Adv. Math. 35, 1980, 274.

95
S.M. Roman. The algebra of formal series. III. several variables. J. Approx. Theory, 26:340--381, 1979. (MR 81i:05023b).

96
S.M. Roman. Polynomials, power series and interpolation. J. Math. Anal. Appl., 80:333--371, 1981. (MR 83k:41006).

97
S.M. Roman. The theory of umbral calculus I. J. Math. Anal. Appl., 87:58--115, 1982. (MR 84c:05008a).

98
S.M. Roman. The theory of umbral calculus II. J. Math. Anal. Appl., 89:290--314, 1982. (MR 84c:05008b).

99
S.M. Roman. The theory of umbral calculus III. J. Math. Anal. Appl., 95:528--563, 1983. (MR 85e:05020).

100
S.M. Roman. The umbral calculus. Academic Press, 1984. (MR 87c:05015 = Zbl. 536.33001).

101
S.M. Roman. More on the umbral calculus, with emphasis on the q-umbral calculus. J. Math. Anal. Appl., 107:222--254, 1985. (MR 86h:05024).

102
S.M. Roman. The logarithmic binomial formula. Amer. Math. Monthly, 99:641--648, 1992. (MR 93h:05014).

103
S.M. Roman. The harmonic logarithms and the binomial formula. J. Combin. Theory, 63:143--163, 1993. (MR 94i:05007).

104
S.M. Roman, P.N. De Land, R.C. Shiflett, and H.S. Schultz. The umbral calculus and the solution to certain recurrence relations. J. Comb. Inf. Syst. Sci., 8:235--240, 1983. (MR 87b:05026).

105
S.M. Roman and G.-C. Rota. The umbral calculus. Adv. Math., 27:95--188, 1978. (MR 58#5256).

106
G.-C. Rota. The number of partitions of a set. Amer. Math. Monthly, 71:498--504, 1964. (MR 28#5009).

107
G.-C. Rota, D. Kahaner, and A. Odlyzko. On the foundations of combinatorial theory VII. Finite operator calculus. J. Math. Anal. Appl., 42:684--760, 1973. (MR 49#10556).

108
G.-C. Rota and B.D. Taylor. The classical umbral calculus. SIAM J. Math. Anal., 25:694--711, 1994.

109
I.M. Sheffer. Some properties of polynomial sets of type zero. Duke Math. J., 5:590--622, 1939. (Zbl. 22, 15; MR 1, 15).

110
E.S.W. Shiu. Proofs of central-difference interpolation formulas. J. Approx. Theory, 35:177--180, 1982. (MR 84i:41004).

111
E.S.W. Shiu. Steffensen's poweroids. Scand. Actuar. J., 2:123--128, 1982. (MR 83m:62167).

112
S.N. Singh and S. Asthana. Multivariate shift invariant operators. J. Math. Anal. Appl., 118:422--442, 1986. (MR ?).

113
A J. Stam. Polynomials of binomial type and renewal sequences. Stud. Appl. Math., 77:183--193, 1987. (MR 90m:60097).

114
A J Stam. Polynomials of binomial type and compound Poisson processes. J. Math. Anal. Appl., 130:493--508, 1988. (MR 89d:60134).

115
A J. Stam. Lagrange's theorem, polynomials of convolution type and probability distributions. Technical Report W-9011, University of Groningen, September 1990.

116
J. F. Steffensen. On a special type of polynomials. Mat. Tidsskr. B., pages 6--9, 1950. (MR 12, 409).

117
J.F Steffensen. The poweroid, an extension of the mathematical notion of power. Acta Math., 73:333--366, 1941. (MR 3, 326).

118
J.F. Steffensen. On a class of polynomials. Mat. Tidsskr. B, 1945:10--14, 1945. (MR 7, 157).

119
J.F. Steffensen. On the polynomials , and . Acta Math., 78:291--314, 1946. (MR 8, 155).

120
E.J. Taft. Combinatorial sequences as sequences of divided powers. Congr. Num., 36:23--26, 1982. (MR 85g:05024).

121
E.G. Tashes. Application of the Liouville-Steklov method to orthogonal Appell polynomials in two variables. In Application of functional analysis in approximation theory, pages 76--82. Gos. univ. Kalinin, 1988. (MR 90b:33026).

122
K. Ueno. Umbral calculus and special functions. Adv Math., 67:174--229, 1988. (Zbl. 645.05011; MR 88m:05012).

123
K. Ueno. Hypergeometric series formulas through operator calculus. Funkcialaj Ekvacioj, 33:493--518, 1990. (MR 92b:33004).

124
L. Verde-Star. Dual operators and Lagrange inversion in several variables. Adv. Math., 58:89--108, 1985. (MR 87d:05027).

125
L. Verde-Star. Interpolation and combinatorial functions. Stud. Appl. Math., 79:65--92, 1988. (MR 91b:05012).

126
L. Verde-Star. Divided differences and combinatorial identities. Stud. Appl. Math., 85:215--242, 1991. (MR 92i:65027).

127
L. Verde-Star. Polynomial sequences of interpolatory type. Stud. Appl. Math., 53:153--171, 1993. (MR 94d:41008).

128
L. Verde-Star. Operator identities and the solution of linear matrix difference and differential identities. Stud. Appl. Math., 91:153--177, 1994.

129
O.V. Viskov. Operator characterization of generalized Appell polynomials. Sov. Math. Dokl., 16:1521--1524, 1975. (MR 52#14416).

130
O.V. Viskov. On bases in the space of polynomials. Sov. Math. Dokl., 19:250--253, 1978. (MR 58#10854).

131
O.V. Viskov. Inversion of power series and Lagrange inversion. Sov. Math. Dokl., 22:330--332, 1980. (MR 82d:30002).

132
M. Ward. A calculus of sequences. Amer. J. Math., 58:255--266, 1936. (Zbl. 14, 56).

133
T. Watanabe. On a dual relation for addition formulas of additive groups: I. Nagoya Math. J., 94:171--191, 1984. (MR 86f:05020).

134
T. Watanabe. On a dual relation for addition formulas of additive groups: II. Nagoya Math. J., 97:95--135, 1985. (MR 86i:05023).

135
T. Watanabe. On a generalization of polynomials in the ballot problem. J. Statist. Planning & Inference, 14:143--152, 1986. (MR 87j:05024).

136
T. Watanabe. On a determinant sequence in the lattice path counting. J. Math. Anal. Appl., 123:401--414, 1987. (MR 88g:05015).

137
B.G Wilson and F.J. Rogers. Umbral calculus and the theory of multispecies nonideal gases. Phys. A, 139:359--386, 1986. (MR 88d:82024).

138
D. Zeilberger. Some comments on Rota's umbral calculus. J. Math. Anal. Appl., 74:456--463, 1980. (MR 81e:05025).


sandro@win.tue.nl / loeb@labri.u-bordeaux.fr